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The introduction of the Internet has revolutionized not only our society but also 
transformed the software industry, with knowledge and information sharing becoming a 
central part of software development processes. The resulting globalization of the software 
industry has not only increased software reuse, but also introduced new challenges. 
Among the challenges, arising from the knowledge sharing is Information Security, which 
has emerged to become a major threat to the software development community, since 
not only source code but also its vulnerabilities are shared across project boundaries. 
Developers are unaware of such security vulnerabilities in their projects, often until a 
vulnerability is either exploited by attackers or made publicly available by independent 
security advisory databases. In this research, we present a modeling approach, which takes 
advantage of Semantic Web technologies, to establish traceability links between security 
advisory repositories and other software repositories. More specifically, we establish a 
unified ontological representation, which supports bi-directional traceability links between 
knowledge captured in software build repositories and specialized vulnerability database. 
These repositories can be considered trusted information silos that are typically not 
directly linked to other resources, such as source code repositories containing the reported 
instances of these problems. The novelty of our approach is that it allows us to overcome 
some of these traditional information silos and transform them into information hubs, 
which promote sharing of knowledge across repository boundaries. We conducted several 
experiments to illustrate the applicability of our approach by tracing existing vulnerabilities 
to projects which might directly or indirectly be affected by vulnerabilities inherited from 
other projects and libraries.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Internet has revolutionized our society and impacted the software industry [1], with knowledge and information 
sharing becoming a central part of software development, facilitating the globalization of the software industry [1]. This 
change in the information flow removes traditional project boundaries and promotes a free flow of information, resources 
and knowledge across projects. Globalization in the software industry [2] can have several facets ranging from out- and 
crowd-sourcing parts of a development process, the wide spread use of collaborative environments facilitating resource 
sharing, to the introduction of completely new software development paradigms such as open source. Open source software 
publishes source code and other related artifacts on the Internet using specialized code and artifact sharing portals such 
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as Sourceforge,1 GitHub,2 and Maven,3 allowing these artifacts to be shared and reused globally. This reuse can take on 
different forms, such as integrating open source projects into existing software ecosystems (e.g., reuse of code libraries) or 
extending and customizing available projects to meet specific requirements, e.g., creating specialized Linux distributions [3].

Shared knowledge resources not only facilitate reuse and collaboration, they also introduce new challenges to the soft-
ware engineering community. Knowledge and resources are no longer controlled by a single project or organization and 
instead are now distributed across multiple projects, organizations or even global software ecosystems. Given this new dis-
tributed nature of software systems and their resources, traditional analysis approaches and tools, developed for a project 
level context, no longer scale to the new global software context. Among the challenges arising from the knowledge sharing 
is Information Security (IS), which has emerged to become a major threat to the software development community. At its 
core, IS promotes that one should consider different security concepts (e.g. secure programming, knowledge about software 
security vulnerabilities and their analysis) in the development process. The importance of IS for the software community 
is reflected by the fact that it has become an integrated part of current software engineering best practices [4]. Different 
specialized software security and advisory databases (SSD) (e.g., National Vulnerability Database (NVD) [5]) have been in-
troduced to track software known vulnerabilities and potential solutions to resolve them. These SSD can be seen as a direct 
response by the software industry to the ever-increasing number of software attacks, which no longer are limited to a 
particular project or computer but often affect now hundreds of different systems and millions of computers.

Software security repositories, like most other software repositories, can be considered trusted information silos that 
focus on modeling and managing specialized resources or knowledge. Software security repositories are typically not linked 
to other knowledge resources, such as source code repositories containing reported instances of these problems or project 
specific issue trackers. There are several reasons why the software community is still dealing with such information silos: 
1) Establishing traceability among repositories is often difficult due to the lack of a common, standardized approach for 
modelling knowledge across repository boundaries [6]. 2) Reasoning and semantic integration are a challenge, since most 
repositories lack the required expressiveness (e.g. First Order or higher order logics) in their underlying knowledge modeling 
approach to support automated reasoning [7]. 3) Using relational modeling schemata, facts and schemata remain machine 
but not human accessible without additional tool support for extracting schemata information, making knowledge sharing 
more difficult. 4) While significant progress has been made by the mining software repository research community to 
identify potential (semantic) links among repositories by introducing handcrafted, specialized (trained) machine and data 
mining techniques within proprietary datasets, a key challenge remains – the results and information obtained remain still 
not reusable or shareable for later consumption by either humans or machines [8].

Given the growing importance of IS for the software domain and the challenges the software community faces in in-
tegrating software repositories, the paper introduces a Semantic Web enabled modeling approach which addresses this IS 
knowledge integration challenge. While our modeling approach supports the integration of a broad range of traditional soft-
ware repositories (e.g., issue trackers, version control systems, Q&A repositories), we focus in this research in particular on 
how we can capture knowledge from specialized IS repositories (e.g., NVD) and seamless integrate this knowledge with one 
of the more widely used software build repositories (e.g., MAVEN). For our research, we take advantage of the Semantic 
Web and its supporting technologies such as ontologies and Linked Data to establish a common, standardized unified rep-
resentation to integrate knowledge resources across existing repository boundaries. In addition, this formal representation 
allows us take advantage of Semantic Web reasoning services to infer both explicit and implicit knowledge to enrich the 
already modeled knowledge.

This unified knowledge model allows us to identify potential impact of vulnerabilities on software systems across project 
boundaries. For example, by linking the NVD security database to the Maven build repository we were able to show that 
not only 576 projects in Maven directly include known security vulnerabilities, but also that due to the ripple effect more 
than 400,000 projects or libraries might be potentially affected.

The key benefits of our research are manifold, including the ability to support:

• Transformation of traditional security and vulnerability information silos into information hubs.
• Matching of different ontologies through their shared concepts and semantic linking to support integration of knowl-

edge.
• Identification of potential rippling impact of vulnerabilities across project boundaries based on project build dependen-

cies.

The remainder of this paper is structured as follows: Section 2 introduces the motivation for our research. Section 3 de-
scribes in more detail background relevant to our research. Section 4 describes the approach used. Section 5 presents our 
experiments and findings. We discuss observations regarding our integration approach, and outline the potential threats to 
the validity of this approach in Section 6. Section 7 discusses relevant work, followed by Section 8, which discusses future 
work and concludes the paper.

1 http://sourceforge.net/about.
2 https://github.com/about.
3 http://search.maven.org/.
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Table 1
Derby versions and their dependent projects in Maven.

Derby 
version

Release 
year

Reported 
vulnerabilities in NVD

Direct dependencies in 
Maven Repository

10.1.1.0 2005 3 382
10.5.3.0 2009 1 0
10.11.1.1 2014 0 36

2. Problem statement

2.1. Illustrative example

Context: over the last decade, reuse and integration of open source components through API usage by third party systems 
has gained on importance in order to reduce development and maintenance cost.

Motivation: The following example illustrates how a combination of component reuse through API usage and a lack of 
traceability links between heterogeneous knowledge resources can not only impact trust in a system implementation but 
also the trust in API recommendations. In what follows, we introduce two scenarios to motivate our work. Both examples 
involve Apache Derby,4 an open source DBMS implemented entirely in Java and is often embedded in other projects to 
support online transaction processing.

Scenario#1: Missing knowledge integration. A significant body of research exists in recommending APIs to developers. 
For example, in the work by Mileva et al. [9], the authors explicitly recommended developers to use an older version of 
Apache Derby (version 10.1.1.0) given its widespread usage/popularity rather than migrating to a newer version. However, 
like any software project, Apache Derby is also susceptible to security vulnerabilities. By recommending the older version 
of Derby (version 10.1.1.0.), the authors recommended a component that contained three known reported (in NVD) and 
unpatched security vulnerabilities (Table 1), rather than the newer version 10.5.3.0 which only contains one vulnerability.

Scenario#2: Tracing vulnerabilities across project boundaries. Establishing traceability links between heterogeneous 
software repositories allows for improved analysis and knowledge inference within projects and across project boundaries. 
In this scenario, we illustrate how one can take advantage of traceability links between the NVD repository and the Maven 
build repository, to determine the possible impact of a vulnerable component on other projects. Table 1 shows the number 
of projects in Maven that have a direct build dependency on different versions of Apache Derby. It should be noted that 
for the identification of dependent projects, we did not distinguish if a project actually makes use of a vulnerable Derby 
component. Nevertheless, the example shows that by being able to trace vulnerable components back to a build repository, 
maintainers and security experts can now benefit from applications such as impact analysis of vulnerabilities even for a 
global software ecosystem scale.

2.2. Research questions

In this paper, we aim to answer the following research questions:

• RQ1: To what extent are users/developers of open source components directly susceptible to known security vulnera-
bilities?

• RQ2: Can projects that are indirectly dependent on vulnerable components be identified?
• RQ3: Can a more formal knowledge representation be beneficial in determining transitive dependencies of vulnerable 

components in software ecosystems?

In what follows, we introduce background principles and our research methodology, which we used to establish traceability 
links between Maven and NVD project information in order to answer our research questions.

3. Background

3.1. The Semantic Web and ontologies in a nutshell

The term “ontology” originates from philosophy, where it denotes the study of existence. In computer science, a widely 
accepted definition has been introduced by Studer [10]: “An ontology is a formal, explicit specification of a shared concep-
tualization.” Ontologies are typically used as a formal and explicit way to specify concepts and relationships in a domain 
of discourse. They can overcome portability, flexibility, and information sharing problems associated with databases [11]. 

4 db.apache.org/derby/.

http://db.apache.org/derby/
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Fig. 1. Semantic Web architecture in layers [16].

Fig. 2. Description logics system.

Compared to relational approaches, which assume complete knowledge (closed world assumption), ontologies support the 
modeling of incomplete knowledge (open world assumption) and the extendibility of the ontological model.

The Semantic Web (SW) allows for machine understandable Web resources that can be shared and processed by both 
software tools (e.g., search engines) and humans [12]. Ontologies are an important foundation of the SW, as they allow 
knowledge to be shared between different agents and the creation of common terminologies for understanding [12]. More-
over, the resulting data representation format becomes reusable rather than being proprietary to specific tasks. The current 
data-model used to represent meta-data in SW is the Resource Description Format (RDF) [13]. RDF is used to formalize 
meta-models in form of < subject, predicate, object >, which are called triples. RDF triples make statements about re-
sources, with a resource in the SW being anything: a person, project, software, a security bug, etc. In order to make triples 
persistent, RDF triples stores are used, with each triple being identified by an Uniform Resource Identifier (URI) [13].

The Web Ontology Language (OWL) [14] is used on top of the RDF layer (see Fig. 1). It is a standard modeling language 
put forward by the W3C5 to pursue the vision of the SW. OWL provides for machine understandable (i.e., capturing seman-
tics) information, allowing Web resources to be automatically processed and integrated. The widely used OWL sub-language 
OWL-DL is based on Description Logics (DLs) [15].

Description Logic (DL): A DL based knowledge representation system provides typical facilities to set up knowledge bases 
and to reason about their content [12]. Fig. 2 illustrates a typical Description Logic based knowledge system.

Such a knowledge base (KB) consists of two components – the TBox contains the terminology, i.e. the vocabulary of an 
application domain, and the ABox contains assertions about named individuals in terms of this vocabulary. The terminology 
is specified using description languages introduced previously in this section, as well as terminological axioms, which make 
statements about how concepts or roles are related with each other. In the most general case, terminological axioms have 
the form:

C � D (R � S) or C ≡ D (R ≡ S)

Where C and D are concepts (R and S are roles). The semantics of axioms is defined as: an interpretation I satisfies C � D
(R � S) if CI ⊆ DI (RI ⊆ SI). A Tbox, denoted as T, is a finite set of such axioms. The assertions in an ABox are specified using 

5 W3c semantic web activity. W3C, 1994, www.w3.org.

http://www.w3.org


S.S. Alqahtani et al. / Science of Computer Programming 121 (2016) 153–175 157
Table 2
Repository statistics.

Statistics for the central repository

Data index last refreshed 2015-09-02 15:14:21 UTC
Total number of artifacts indexed (GAV) 1,054,470
Total number of unique artifacts indexed (GA) 16,160
Current size of repository on disk 1,761,203 MB

concept assertions and role assertions, which have the form C(a), R(a, b), where C is a concept, R is a role, and a, b are 
names of individuals. The semantics of assertions can be given as: the interpretation I satisfies the concept assertion C(a) if 
aI ∈ CI, and it satisfies the role assertion R(a, b), if (aI, bI) ∈ RI. An Abox, denoted as A, is a finite set of such assertions.

A Description Logic system not only stores terminologies and assertions, but also offers services that allow to reason
about them. Typical reasoning services for a TBox are to determine whether a concept is satisfiable (i.e. non-contradictory), 
or whether one concept is more general than another one (i.e. subsumption). Important reasoning services for an ABox are to 
find out whether its set of assertions is consistent, and whether the assertions in an ABox entail that a particular individual 
is an instance of a given concept description.

A DL knowledge base might be embedded into an application, in which some components interact with the KB by 
querying the represented knowledge and by modifying them, i.e. by adding and retracting concepts, roles, and assertions. 
However, many DL systems, in addition to providing an application programming interface that consists of functions with a 
well-defined logical semantics, provide an escape hatch by which application programs can operate on the KB in arbitrary 
ways [12].

In addition to RDF, OWL and OWL-DL, the Semantic Web community provides tools to process OWL semantics and RDF 
data. Jena [17] emerged as a Java framework for building applications and providing a programmatic environment for RDF 
and OWL. Reasoners (e.g., RDFS + +,6 Pellet7) can infer new facts about the designed ontology and form a set of asserted 
axioms. RDF databases, such as Virtuoso [18], Allegrograph [19], are used to materialize and store RDF triples. SPARQL is an 
RDF query language, that is, a semantic query language for databases, able to retrieve and manipulate data stored in RDF 
format.

The Semantic Web has been designed from ground up to address the integration challenge, traditional relational 
databases are facing, such as [20]: (1) The Semantic Web facilitates the creation of taxonomies using ontologies, which 
can be shared across applications and domains, which is in contrast to relational database, where schemata sharing and 
reuse is not natively supported [20]. (2) Semantic Web meta-models are extensible, allowing new knowledge to be added 
without affecting existing knowledge, unlike relational databases, where extending the schema becomes a time consuming 
operation, affecting often a complete database. For example, a change of index type (foreign key) might require dropping 
and recreating several other dependent database indices. (3) The Semantic Web makes relations explicit. In contrast, rela-
tional databases do not provide a consistent method to obtain the semantic of a relation. A query can join any two table 
columns, as long as their datatypes match – there is no interpretation of the meaning of the actual relation performed. As a 
result, relational databases are not machine interpretable, and the inference of knowledge (explicit or implicit) requires hu-
man interaction. (4) Linking data is a key property of the Semantic Web, with any resource being identified by its Uniform 
Resource Identifier (URI). These URIs, allow for a consistent identification of the same resource across various knowledge 
resources. This is in contrast to relational databases where resources are local and not universal, restricting the ability of 
relational databases to establish resource links outside their own local schema.

3.2. Maven

Maven, hosted by the Apache Software Foundation, is an open-source build automation tool used primarily for Java 
projects. In Maven, a software project defines its dependence on any of its artifacts as part of its xml configuration file (also 
called the POM file), which is stored in the central repository. Upon the build of a project, Maven dynamically downloads 
all the required Java libraries and Maven plug-ins from the Maven central repository into a local cache for use by the 
project. The Maven Central repository provides open source organizations with an easy, free and secure way to publish 
their components for access by millions of developers. The repository contains approximately 838,810 library versions, each 
having components such as jar files, source code, Javadoc and POM files. Tables 2 and 3 provide an overview of the Maven 
repository and its most downloaded artifacts.

The Project Object Model (POM) is an XML file, which can be considered the basic unit of work in Maven, containing 
all relevant project information (see Fig. 3). This POM defines a groupId, artifactId, and version (GAV), the three required 
elements to describe every project. In what follows we describe briefly the main elements:

6 http://franz.com/agraph/support/learning/Overview-of-RDFS++.lhtml.
7 https://www.w3.org/2001/sw/wiki/Pellet.

http://franz.com/agraph/support/learning/Overview-of-RDFS++.lhtml
https://www.w3.org/2001/sw/wiki/Pellet
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Table 3
Top 10 downloads.

Top 10 most download artifacts in 2015-03-10

org.codehaus.plexus plexus-utils
junit junit
org.apache.maven.plugins maven-resources-plugin
org.apache.maven.plugins maven-compiler-plugin
org.apache.maven.plugins maven-surefire-plugin
commons-lang commons-lang
commons-collections common-collections
org.codehaus.plexus plexus-interpolation
org.apache.maven.shared maven-filtering
org.codehaus.plexus plexus-compiler-api

Fig. 3. An excerpt of POM entry – dependencies.

< groupId >: A mandatory POM element which uniquely identifies the fully qualified name of the package the project 
belongs to. It has to be a domain name the vendor can control, and often contains the vendor name. For example, 
all core Maven project artifacts are under the groupId “org.apache.maven”.

< artifactId >: Mandatory element which corresponds to the name of the project.
< version >: Mandatory element which denotes the particular version of a project.
< dependencies >: A key element of Maven, since almost every project depends upon others to run correctly. Maven 

automatically downloads the dependencies needed by the project and their transitive dependencies during the 
build process of the project.

3.2.1. Maven dependency management
Maven can manage both internal and external dependencies [21]. An external dependency of a Java project refers to 

libraries, such as Plexus,8 Spring Framework9 or Log4J.10 Internal dependencies are project dependencies on service classes, 
model objects, or persistence logic.

Transitive dependencies: If project-A depends on project-B, which in turn depends on project-C, then project-C is consid-
ered a transitive dependent of project-A. Part of Maven’s appeal is that it can manage transitive dependencies and 
shield the developer from having to keep track of all of the dependencies required to compile and run an applica-
tion [21]. As a result, one can just include a Java library (e.g. Spring Framework) without the need to specify this 
library’s own dependencies.

Optional dependencies: Certain dependencies might only be required if specific features of a project are used. In order 
to reduce the footprint of an application, dependencies can be declared as optional (e.g., see dependencies for 
commons-io and hsqldb in Fig. 3).

8 https://github.com/codehaus/plexus.
9 https://spring.io/.

10 http://logging.apache.org/log4j/2.x/.

https://github.com/codehaus/plexus
https://spring.io/
http://logging.apache.org/log4j/2.x/
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Fig. 4. Dependency exclusion and replacement.

Dependency exclusion and replacement: Maven creates internally a dependency graph to automatically deal with any con-
flicts and overlaps that might occur during the build process (e.g., projects on which the build process might 
depend on may not have declared their set of dependencies correctly). In order to address this special situation, 
Maven 2.x has introduced explicit dependency exclusion. Exclusions are applied for dependencies in your POM 
file that are specified through their groupId and artifactId. During the project build, such excluded artifact will not 
be added to your project’s classpath. For example, Fig. 4 shows the exclusion of a Java transaction library from 
the transitive dependencies of Hibernate; this removed library is replaced through a new dependency on Apache’s 
Geronimo Transaction library.

3.3. National vulnerabilities database (NVD)

In the software security domain, a software vulnerability refers to mistakes or simply facts about the security of software, 
networks, computers or servers that can create security risks and be used by hackers to gain access to system information 
or capabilities [22]. NVD [5] is a U.S government repository created to manage vulnerability data; it is a public data source. 
Its main function is to maintain standardized information about reported software vulnerabilities. Therefore, it creates lists 
of software vulnerabilities identifying vulnerabilities for different types of software systems. For the most part, software 
vulnerabilities in different software repositories contain custom keywords, or textual tags, which help to specify the type of 
problem that existed in their source codes or designs. However, these keywords are not consistent across different bug/prob-
lem reports. For that reason, the Common Vulnerabilities and Exposures (CVE) dictionary maintains information about 
publicly known vulnerabilities. It is a publically available dictionary for common vulnerabilities across different resources 
(development projects, open source systems, etc.). When a new vulnerability is revealed in a software product and be-
comes common to the security experts and interested developers, CVE will introduce an identifier number and a complete 
description list. The CVE details accessible through the unique identifier include the source URL, affected resources and 
related vulnerabilities from the same family group. Given the fast growing number of vulnerabilities, systems and develop-
ers, a classification scheme for CVEs was introduced, the Common Weakness Enumeration (CWE). CWE classifies the list 
of vulnerabilities found on CVEs in a more readable and relational style. CWE is used as a common language to describe 
software security weaknesses and provides a standard by which to classify and describe weaknesses.

NVD, CVE, and CWE are integrated to form a repository capturing information about software vulnerabilities and their re-
lated resources. This repository is public accessible and every two hours updated with the latest vulnerabilities information. 
Alternatively, this update information is also available as an XML feed.

4. Semantic global problem scanner (SE-GPS)

The research methodology used in our approach considers the fact that security concerns, vulnerabilities and project 
information are stored in different, heterogeneous knowledge resources. In order to make this knowledge machine process-
able and to allow for analysis across the individual knowledge resources, we introduce a unified ontological representation. 
This unified representation enables us to share knowledge and analysis results across resource boundaries, eliminating the 
traditional information silos these resources have remained in the past.

Fig. 5 provides an overview of our approach, by focusing on two of our ontologies: SECONT and MAVON.11 Both ontolo-
gies are publicly available for reuse. The major steps in our research methodology include: a fact extraction process (Step 1a 

11 SECONT and MAVON are made publicly available at: https://github.com/segps/segps-ontologies.

https://github.com/segps/segps-ontologies
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Fig. 5. Overall overview of our approach.

and 1b) which extracts facts from the Maven POM files and NVD XML feeds; an ontology population and matching (Step 2); 
and the use of SPARQL queries and RDFS + + reasoning to infer new knowledge based on security vulnerabilities and their 
project dependencies (Step 3).

Extracting Maven facts consists of transforming the Maven central repository index into a list of GAV (groupId, artifactId, 
and version) coordinates. The POM file for each GAV entry is parsed and the MAVON ontology with the extracted facts 
populated. For the fact extraction of the NVD repository, the NVD dataset is downloaded and updated with the latest XML 
feed. We then parse the extracted NVD data and populate the extracted facts in our SECONT ontology. Both ontologies are 
populated through the Jena12 framework and then materialize through our triple store.

Through ontology matching (see Section 4.3) we ca an aligned and unified the ontological representation of these knowl-
edge resources. SPARQL queries can now be used to retrieve both explicit and implicit knowledge captured in this knowledge 
base. We introduce several case studies (see Section 5), which take advantage of our unified representation to illustrate the 
applicability of our approach.

4.1. Ontology modeling

Different ontologies have been proposed in the last decade to model the software engineering and security domain. 
Common to the software engineering ontologies (e.g., EvoOnt [23], KOntoR [24] and LaSSIE [25]) is that they have been 
primarily focusing on conceptualizing a domain of discourse (e.g., issue trackers, source code, versioning systems). The 
modeling of workflow (e.g. [26]) and software engineering practices such as software maintenance have been addressed 
in [27,28] to provide developers with step-by-step guidance. However, common to all of these ontological approaches is 
that they lack the integration of both build systems (e.g., MAVON) and software security ontologies knowledge.

In software security, the state-of-the-art for knowledge engineering has mainly focused on the conceptualization of a 
domain of discourse (e.g., Intrusion Detection Systems, Information Prevention Systems), which in turn models security 
threats in network protocols, software viruses/worms, or host based activities (e.g., logs from top13 or monit14).

Among the key decisions, we had to make during the ontology modeling was to decide whether to create a new software 
security ontology, or reusing exiting one. Our survey of existing knowledge modeling based approaches, showed that several 
software security related ontologies exist, such as: Herzog et al. [29], who presented an OWL-based information security 
ontology that models assets, vulnerabilities, threats, countermeasures, and their relationships. Their approach introduces in 
the total 88 threat classes, 79 asset classes, 133 countermeasure classes and 34 relations between them. Khadilkar et al. [30]
modeled an ontology for the National Vulnerability Database (NVD) and described the concept of semantic web technology 
to represent the information. The ontology modeled only software products and generic security concepts of NVD data. Fur-
thermore, portions of NVD have been mapped into RDF using a schema-based approach [31], and vulnerability descriptions 
remains as strings rather than RDF instances. It was the first ontology created for the NVD database to make the vulner-
abilities database accessible to a larger audience. Undercoffer et al. [32] introduced an ontology taxonomy to extract the 
security characteristics of attacks from text found in software security bulletins. The proposed ontology consists of the three 
components: “Network Class”, which includes network layer information, such as TCP/IP; “System Class”, which represents 
operating systems; and “Attributes”, which describes the monitored process. In their research, Undercoffer et al. [32] studied 
specifically software security attacks relying on their observed behavior and introduced an “Attack Class” classification based 
on the “Means Class” (encapsulates the ways and methods used to perform an attack) and “Consequences Class” (encapsu-
lates the outcomes of the attack). More et al. [33] used different data sources to extract security terms using OpenCalais.15

Their methodology was based on two sections: identifying data streams from cyber-security sources (e.g., Streams from a 

12 jena.apache.org.
13 http://linux.die.net/man/1/top.
14 https://mmonit.com/monit/.
15 http://new.opencalais.com/.

http://jena.apache.org
http://linux.die.net/man/1/top
https://mmonit.com/monit/
http://new.opencalais.com/
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Table 4
MAVON ontology and its main concepts.

Concept Semantic Related properties

Project Represents concept of a software project, which goes through 
various releases

belongsToGroup, hasVersion, hasProjectName

ProjectGroup Each project belongs to a group. A group of projects are normally 
owned/developed by the same organization

containsProject, hasGroupName

ProjectVersion Represents the concept of a version of a software library dependsOn, hasParent, hasVersionNumber, 
hasGroupID, hasArtifactID

network based activity monitors like Wireshark16) and a modeling process (comprising of the ontology, knowledge-base, 
and the reasoning logic) developed using Semantic Web technology. Their methodology mainly focused on network intru-
sion detection systems. Their proposed ontology and knowledge-base were further extended from [32], with the authors 
adding rules to the reasoning logic. Iannacone et al. [34], describe an ontology developed for a cyber-security knowledge 
graph database. The proposed ontology is an incorporation of existing ontologies (e.g., [32,33,35]) in order to include all 
relevant concepts within the cyber-security domain.

Given the number existing ontologies that capture various aspects of security concepts and their definitions [31–39], an 
initial assumption of ours was that ontology reuse and extension should be a straight forward task, especially since both 
properties are considered to be a key advantage of the Semantic Web. However, a more detailed analysis of these ontologies 
showed that: 1) Our domain of discourse significantly differs from their application contexts. For our research, we mainly 
focus on high-level software security vulnerabilities and linking these high-level concepts to other software repositories. 
This is contrary to existing ontologies, which often conceptualize the complete security domain (hardware, network and 
software related concepts). As a result, we only would reuse a small subset of these ontologies for our research context. 
2) Ontology reuse is further complicated by the fact that the same or similar concepts are captured and defined differently 
in the various ontologies, limiting the ability to reuse the concepts. 3) In our research context, the ability to infer knowledge 
and semantic at both the ABox and TBox level is an important aspect of our ontology design, which is in contrast to most 
existing ontologies in the security domain, which only focus on the conceptualization of a domain of discourse.

While we did not reuse an existing ontology in our modeling approach, we did however take advantage of the exiting 
security ontologies [31–39], to identify common core concepts (classes) related to software security vulnerabilities. We then 
modeled these core concepts in our Software Security Ontology (SECONT). In addition, SECONT also includes properties 
and concepts to support the creation of bi-directional links between security concerns and software artifacts in software 
engineering domain.

It should be noted, while our approach supports the (re-)establishing of traceability links across a variety of resources 
(e.g., issue trackers, Q&A repositories), we limit our discussion on creation of direct and indirect links to NVD (security 
domain) and the Maven (software repository domain) to ensure that our paper remains self-contained and focused. As 
part of our overall ontology design strategy we have followed an ontology modeling approach based on the OMG, which 
introduces several layers of ontology abstraction to facilitate concept reuse across abstraction levels.

4.1.1. MAven ONtology (MAVON)
As previously discussed, project POM files in Maven define unidirectional dependencies – to include only these libraries 

in the build process that a project depends on. However, while such a unidirectional dependency model works well for 
managing build dependencies, it restricts a user’s ability to mine knowledge stored in the repository. For example, using 
Maven it is currently not possible for a user to identify all published library releases for a specific project. To overcome this 
challenge, we take advantage of the Semantic Web and its standardized knowledge modeling approach. More specifically, 
we introduce an ontology (MAVON) that allows us to provide analysis services, which no longer rely on Maven’s proprietary 
analysis and knowledge modeling approach. Our MAVON ontology is based upon three core concepts: Project, a description 
of a software project; ProjectVersion, which models release, and version information and ProjectGroup, capturing related 
software products developed by the same organization. Fig. 6 provides an overview of the MAVON ontology, with Tables 4
and 5 describing in more detail concepts and associations introduced by our ontology.

4.1.2. Software sECurity ONTology (SECONT)
The SECONT ontology captures concepts and their relations found in the software security domain. SECONT’s core secu-

rity vulnerability-related classes (e.g., Vulnerability, Weakness, and Product) were derived from the NVD database schema. 
Furthermore, since the purpose of SECONT was not only to conceptualize the software security domain, but also to support 
bi-directional links between security concerns and software artifacts in software engineering domain, we enriched our core 
design with properties and concepts to support our ontology mapping process.

In what follows, we describe SECONT’s core concepts in more detail.

16 http://www.wireshark.org/.

http://www.wireshark.org/
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Fig. 6. Main concepts of the MAVON ontology.

Table 5
MAVON ontology and its properties.

Property Semantic Domain Range

belongsToGroup Each Project belongs to a ProjectGroup Project ProjectGroup
hasVersion Each Project has a set of ProjectVersions Project ProjectVersion
hasProjectName Represents the name of the Project Project Literal
containsProject Each ProjectGroup contains a set of Projects ProjectGroup Project
hasGroupName Represents the name of the ProjectGroup ProjectGroup Literal
dependsOn Each version of a project may depend on other Project versions ProjectVersion ProjectVersion
hasParent Each version of a project may inherit attributes of another Project version ProjectVersion ProjectVersion
hasVersionNumber Represents the release number of the project version ProjectVersion Literal
hasGroupID Represents the name of the group the version belongs to ProjectVersion Literal
hasArtifactID Represents the name of the project the version belongs to ProjectVersion Literal

Vulnerability: In NVD, vulnerability is a core class that can be identified by its unique CVE-ID. The class also captures 
various vulnerability details, such as: date, severity score, vulnerability summary, sources (related to the same 
vulnerability). Each vulnerability has a list of affected products associated, described by its Common Platform Enu-
meration (CPE),17 a standard machine-readable format for encoding names of IT products and platforms.

Weakness: The Weakness class in SECONT captures the vulnerability type identified through the CWE-ID. CWE [39] pro-
vides two different hierarchical perspectives on vulnerabilities: research, and development hierarchy. For our paper, 
we adopted the research view, which is a scientific classification based on types of weaknesses and their associated 
subclasses resulting in a hierarchical representation of popular software security weaknesses. In SECONT the Weak-
ness captures vulnerability based on their weakness type and can be used to compute a vulnerability’s severity 
score based on the CWE-ID.

Product: As part of our knowledge modeling approach, we have the original NVD entry further sub-classed by its applica-
tion (e.g., APIs) and operating system (e.g. Android 2.3.2).

Fig. 7 shows a partial view of SECONT with its core concepts and entities relevant to the software security domain (addi-
tional details are shown in Tables 6 and 7).

4.2. SE-GPS knowledge engineering and evolution

The problem of ontology evolution is far from trivial. The Semantic Web is characterized by decentralization, hetero-
geneity, and lack of central control or authority. These new features have greatly contributed to the success of the Semantic 
Web but at the same time, also introduced several new challenges. In the following, we briefly describe our ontology design 
process for the SECONT and MAVON ontologies (Fig. 8) and how we address some of these knowledge evolution challenges.

17 Common Platform Enumeration – http://cpe.mitre.org.

http://cpe.mitre.org
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Fig. 7. Overview of security concepts in SECONT.

Table 6
SECONT ontology and its main concepts.

Concept Semantic Related properties

Vulnerability Represents a flaw in a product that could allow an attacker to compromise 
the integrity, availability, or confidentiality of that product.

affectsProduct, hasWeakness, createdBy, hasResource

Product Each vulnerability affects products either as software or as operating 
system.

hasVulnerability, locatedIn, hasProductName, 
hasVendorName, hasVersionNumber

Weakness Represents the classification of each vulnerability type. hasConsequences

Author Represents a person who reports the security vulnerability. He/she might be 
the attacker, a software developer who discovers the vulnerability after a 
maintenance task, or a security expert identifying and reporting the 
vulnerability after analyzing the software project using auditing tools for 
security analysis.18

hasName, isPerson, hasURL

Table 7
SECONT ontology and its properties.

Property Semantic Suggested domain Suggested range

affectsProduct Each vulnerability and its set of products Vulnerability Product
hasWeakness Each vulnerability has a type of attack (e.g. Denial of Service, Identity theft, etc.) Vulnerability Weakness
hasProductName Represents the name of the affected product Product Literal
hasVendorName Represents the company own that product Product Literal
hasVersionNumber Represents the version number for the affected product Product Literal
createdBy Represents each vulnerability has been created either by person (e.g. hackers, 

security expert working with security advisory companies)
Vulnerability Author

hasVulnerability It is an inverse-of affectProduct property. It represents that each vulnerable 
software system has a vulnerability id

Product Vulnerability

locatedIn Each identified vulnerability has a location in the software system; either that 
location is file, or package

Product Location

hasConsequences Represent the type of the action that is caused by classified vulnerability Weakness Consequences

As shown in Fig. 8 concepts (e.g., vulnerabilities, weaknesses, consequences) and build concepts (e.g., project). These con-
cepts are then further validated by manual inspecting them against their instances, to ensure that they capture meaningful 
concepts. In order to avoid ambiguity in our design, we manually verified before updating our design that none of these 
extracted concepts or relations already exist within our ontologies. During the last modeling step, we perform an ontology 
matching (Section 4.3) to establish explicit or implicit links among our ontologies, allowing for a seamless integration.

Given that our ontologies are quite small in size (MAVON 34 Million triples and SECONT 32 Million triples), knowledge 
evolution in terms of adding new facts to the knowledge base works reasonable well. Updated vulnerability information is 

18 http://h3xstream.github.io/find-sec-bugs/.

http://h3xstream.github.io/find-sec-bugs/
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Fig. 8. SE-GPS informal design process when new concept encountered.

extracted from the regular XML feeds (every two hours) provided by NVD; the collected daily updates are then populated 
to the SECONT ontology at the end of the day. For the ontology population, we take advantage of the incremental update 
features supported by the triple store. We also perform periodical updates of the MAVON ontology, by downloading and 
extracting updated facts that have been published in the Maven repository. Furthermore, since our TBox design will not be 
affected by these periodical updates – no new concepts will be introduced, only changes to ABox (instance level) occur, our 
established traceability links at the TBox level remain stable and consistent throughout these periodical updates.

Result integration. It is not realistic to expect all the sources to share a single, consistent view at all times, in particular 
if one considers result integration, where results might be generated by different analysis approaches. Rather, we expect 
disagreements between individual users and tools during an analysis. An elegant model for managing (possibly conflicting) 
information from different sources has been proposed by [40]: Knowledge is structured into viewpoints and topics. View-
points are environments that represent a particular point of view (e.g., information stemming from a particular tool or 
entered by a user). Topics are environments that contain knowledge that is relevant to a given subject (e.g., design patterns, 
architectural recovery). These environments are nested within each other: viewpoints can contain either other viewpoints or 
topics. A topic can contain knowledge pertaining to its subject, but also other viewpoints, e.g., when the subject is another 
user.

Through this approach, we can explicitly distinguish between the knowledge a particular resource has about a certain 
topic and at the same time, manage possible conflicting knowledge about what a resource believes other resources may 
believe about the same topic, since this information is contained within different, nested viewpoints. These viewpoints create 
spaces within which to do reasoning: consistency can be maintained within a topic or a viewpoint, but at the same time, 
conflicting information about the same topic can be stored in another viewpoint. This allows us to collect and maintain as 
much knowledge as possible, attributing it to its sources, without having to decide on a “correct” set of information, thereby 
losing information prematurely. Viewpoints can be constructed as well as destructed through the processes of ascription and 
percolation. Stated briefly, the process of ascription allows incorporating knowledge from other viewpoints (users, tools) 
unless there is already conflicting information on the same topic. The mechanism of percolation is introduced for the 
deconstruction of nested knowledge. Here, some (assumed) held knowledge on a topic contained in a nested viewpoint may 
be percolated into its outer environments, up to the top-level viewpoint of a user (or the main environment) and be thus 
acquired as knowledge.

4.3. Ontology matching

In order for us to take full advantage of the knowledge captured in the SECONT and MAVON ontologies, we apply 
ontology matching techniques to establish traceability links among these ontologies. These links reduce the semantic gap be-
tween these ontologies and are essential pre-requisites for supporting seamless knowledge integration. As discussed in [41]
matching techniques can be divided in two categories: (1) content-based matching, which focuses on internal information 
originating from the ontologies to be matched and (2) context-based, which matches external information originating from 
relations between ontologies or other external resources. In our case, we take advantage of context-based matching [41], 
which can be further divided into four major categories of ontology matching methods. These methods can be further dis-
tinguished depending on the type of data the algorithms work on: terminological (lexical mapping), structural, extensional 
and semantic (semantic mappings) methods. Terminological and structural methods make use of data captured as part of 
ontology descriptions (e.g., labels, comments, attributes and types, relations. with other entities); extensional methods work 
on instances – matching facts across ontologies; and semantic methods match ontologies based on the semantic interpreta-
tion of the models, using logic reasoning to infer correspondences. In our approach, we use a combination of terminological 
and semantic matching methods (shown in Fig. 9).

For the matching, we take advantage of the semantic equivalence which exists between SECONT:Product and MAVON:Pro-
jectVersion, since both concepts refer in our modeling approach to the same entity.

In OWL, this equivalence relationship between classes and properties can be explicitly expressed through the use of 
owl:equivalentClass and owl:equivalentProperty constructs. These equivalence relationships provide an intuitive way to express 
relationships between ontology classes and properties.
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Fig. 9. Ontologies matching process.

Listing 1. Equivalent relations with data properties.

Query 1. owl:sameAs constructing query.

In order, to capture the semantic relationships between individuals in MAVON and SECONT we use the owl:sameAs
construct. For example, “Secont#mortbay:jetty:6.1.1 owl:sameAs Mavon#org.mortbay.jetty:jetty:6.1.1” since both instances 
correspond to the same vulnerable product “jetty 6.1.1”. Using the owl:sameAs construct, we can now establish links between 
MAVON and SECONT individuals based on the following rules:

• Both owl:equivalentProperty pairs (secont:hasProductName, mavon:hasArtifactID) and (secont:hasVersionNumber, mavon:
hasVersionNumber) must have the same range values (Listing 1) – individuals must therefore have identical product 
names and version numbers.

• The value for secont:hasProductVendor must be contained in mavon:hasGroupID’s value (see Query 1). This ensures that 
products with the same name and version are matched if and only if they are produced by the “same” company.

However, it should be noted that there is no guarantee that two ontologies in the same domain will align through shared 
concepts, due to ambiguity or lack of such shared concepts. In Section 6, we evaluate in detail the precision and recall for 
our approach by comparing it against the OWASP Dependency-Check tool [42].

5. Case studies

In what follows, we present results from three case studies, which we conducted to evaluate the applicability of our 
knowledge modeling approach. The three case studies are:

Identifying direct vulnerable projects – Identifies projects within the Maven repository containing vulnerabilities, which 
are already known and reported in the NVD repository (Fig. 10.1).

Identifying indirect vulnerable projects – Identifies vulnerabilities already reported in the NVD repository that have transi-
tive dependencies on projects within the Maven repository (Fig. 10.2).
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Fig. 10. Direct and indirect security vulnerabilities.

Table 8
Statistics of case study data.

Ontology Projects Versions Vendors Total triples

SECONT 24,807 145,101 13,990 3,2015,659
MAVON 92,989 795,311 15,883 3,4089,236

Usage-based transitive dependency impact – Studies the direct/indirect impact of vulnerable components on projects in 
Maven, based on the actual usage of these vulnerable components.

The objective of the case studies is to illustrate the applicability of our approach by answering the research questions 
introduced in Section 2.2. For each research question, we present its motivation, the analysis approach and a discussion of 
our findings. Table 8 shows some statistics for the dataset we used in our case studies.

5.1. Direct security vulnerabilities in MAVON

RQ1: To what extent are users/developers of open source components directly susceptible to security vulnerabilities?

Motivation: Software projects such as libraries, programs or utilities are components designed to perform some required 
functions [22], which can be reused by other programs. The Maven repository contains over 100,000 of such components 
with on average 9 different versions for each component. Open and closed source software projects leverage these compo-
nents by reusing and integrating their available API functionalities (e.g.; data access, resource management, user interface 
interaction, and business functions).

Given such global components reuse, vulnerabilities identified in shared components will no longer be restricted to a 
single file or project, but instead can impact a large number of dependent components or even global software ecosys-
tems [22]. This potential risk is further increased by the already reported large number of known vulnerabilities and coding 
mistakes. For example, MITRE19 has classified in their CWE database [39] almost 1000 different classes of inadvertent coding 
mistakes or over 70,000 known vulnerabilities have so far been reported in NVD.20

Approach: In order to determine the potential impact of a vulnerability on open source projects, we first identify projects 
in MAVON, which have reported NVD vulnerabilities (captured in our SECONT ontology). We then establish a semantic link 
between the MAVON and SECONT ontologies using the following SPARQL query (Query 2).

19 http://www.mitre.org/.
20 As of July 1st, 2015.

http://www.mitre.org/
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Query 2. SPARQL query for listing equivalent vulnerable projects in MAVON and SECONT.

Table 9
Examples of linked vulnerabilities.

SECONT data MAVON data CVEs

Secont#sonatype:nexus:2.3.1 Mavon#org.sonatype.nexus:nexus:2.3.1 Secont#CVE-2014-0792
Secont#apache:poi:3.7 Mavon#org.apache.poi:poi:3.7 Secont#CVE-2014-3529
Secont#apache:axis:1.4 Mavon#org.apache.axis:axis:1.4 Secont#CVE-2014-3596
Secont#apache:wss4j:2.0.0 Mavon#org.apache.wss4j:wss4j:2.0.0 Secont#CVE-2015-0227
Secont#apache:wss4j:2.0.1 Mavon#org.apache.wss4j:wss4j:2.0.1 Secont#CVE-2015-0227
Secont#apache:wss4j:2.0.0-rc1 Mavon#org.apache.wss4j:wss4j:2.0.0-rc1 Secont#CVE-2014-3623

Fig. 11. Security vulnerabilities affecting Tomcat 7.0.42.

Findings: Our analysis of Maven showed that 0.62% of all Maven projects include known vulnerabilities, which have been 
already disclosed in the NVD database. Table 9 shows some of these known vulnerabilities and their occurrences in the 
Maven build repository (e.g., Sonatype Nexus Version 2.3.1 contains the NVD vulnerability CVE-2014-0792).

Vulnerable projects identified in Maven may suffer from multiple vulnerabilities. Further analysis of our results showed 
that projects might often suffer from multiple vulnerabilities. Our analysis of the Maven repository showed that 43.92% of 
the 576 identified vulnerable projects suffer from multiple vulnerabilities, with Oracle’s JavaFX 2.2 being the most vulnerable 
project in the repository, containing 40 known vulnerabilities. Providing developers with such insights can help avoid the 
reuse of APIs/components prone to vulnerabilities and therefore improve trust in their components/products.

We implemented a visualization tool – SE-GPS [43], which allows us to analysis and visualize individual Maven projects 
and all their reported vulnerabilities. For example, the screen capture in Fig. 11 shows the NVD vulnerabilities for Tomcat 
Version 7.0.42, which has 10 known security vulnerabilities.

Security vulnerabilities can affect several product releases. This type of analysis can guide software and security engi-
neers to ensure consistent patching and regression testing of vulnerabilities across product lines or versions of a product, 



168 S.S. Alqahtani et al. / Science of Computer Programming 121 (2016) 153–175
Table 10
Critical vulnerabilities for android project.

Android version CVE-IDs # of direct 
dependencies

Mavon#com.google.android:android:2.2.1 CVE-2013-4787 360
Mavon#com.google.android:android:2.3.1 CVE-2013-4787 176
Mavon#com.google.android:android:2.3.3 CVE-2013-4787 351
Mavon#com.google.android:android:3.0 CVE-2013-4787 34
Mavon#com.google.android:android:4.2 CVE-2013-4787 1

Table 11
Evaluation projects.

Name # of versions Versions

Apache Axis 1 1.4
Apache CXF 3 2.74, 3.0.0, 3.0.1
Apache Hbase 12 0.92.0–0.92.2, 0.94.0–0.94.7, 0.94.6.1
Apache Commons-Compress 5 1.0 to 1.4
Apache Httpclient 14 4.0, 4.0.1, 4.1, 4.1.1, 4.1.2, 4.2, 4.2.1–4.2.3, 4.3, 4.3.1–4.3.4
Apache POI 2 3.6, 3.7
Apache Wicket 22 1.4.0–1.4.8, 1.4.10–1.4.22
Apache Wss4j 3 2.0.0, 2.0.0-rc1, 2.0.1
Mortbay Jetty 12 6.0.1, 6.1.1, 6.1.4–6.1.7, 6.1.9, 6.1.12, 6.1.14–6.1.16, 6.1.19
Neo4j 1 1.9.2
Sonatype Nexus 11 2.0, 2.0.1–2.0.6, 2.1, 2.1.1, 2.2, 2.3.1
Apache Syncope 1 1.0.6

Listing 2. Define transitive constraints.

since the same vulnerability might affect different product releases. For example, Table 10 shows security vulnerability 
CVE-2013-4787, which has been reported for five different Android versions.

Are vulnerabilities components still used even after a new patched version had been released? For example, in De-
cember 2010, Google released its Nexus S smartphone.21 The phone was originally running on Android 2.3.3 – an Android 
version that already contained the security vulnerability discussed in Table 11. While the Nexus S received regular Android 
OS updates up to Android Version 4.2, an actual fix of the reported vulnerability (CVE-2013-4787) was only introduced with 
Android 4.2.2. However, this new Android version is no longer supported and distributed for the Nexus S, leaving existing 
users of the phone susceptible to attacks.

5.2. Indirect security vulnerabilities in MAVON

RQ2: Can projects which are indirectly dependent on vulnerable components be identified?

Motivation: Most software projects depend in their implementation on external components [22]. As our initial analysis of 
the NVD and Maven repository showed, the Maven repository includes 576 of such vulnerable projects/components. In what 
follows, we extend our analysis to include projects that potentially are indirectly affected by these vulnerable components. 
In order to compute this impact set, we take advantage of our Semantic Web based modeling approach and its support for 
inference services.

Approach: A relation P is said to be transitive if P (a, b) and P (b, c) implies P (a, c); this can be expressed in OWL through 
the owl:TransitiveProperty construct. We define therefore mavon:dependsOn to be a bi-directional transitive property of type 
owl:TransitiveProperty (Listing 2). It should be noted that for the transitive dependencies analysis in this case study we do 
not distinguish if a project calls or makes use of the actual vulnerable part of the source code in that component.

With this transitive construct, we are now able to retrieve a list of all projects that have a direct and transitive depen-
dency on the vulnerable library, and vice versa (see Query 3).

Findings: Our transitive vulnerable dependency analysis shows that while a project might not have any direct vulnera-
bility reported in the NVD database, it can still depend indirectly on other vulnerable libraries and components. For our 
case study, we selected six open source libraries with reported vulnerabilities. The results of our study (Fig. 12) shows that 
similar to traditional impact analysis, the inclusion of transitive dependency levels will significantly increase the potential 
impact scope and therefore the set of potential affected projects. For example, Apache Derby 10.1.1.0 has 382 direct project 

21 https://en.wikipedia.org/wiki/Nexus_S.

https://en.wikipedia.org/wiki/Nexus_S
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Query 3. Query for locating indirect vulnerabilities.

Fig. 12. Transitive dependencies for 6 selected projects which contain known vulnerabilities.

dependencies, the potential dependencies increase exponentially with the inclusion of additional transitivity level in the 
analysis (e.g., 130,000 projects, by including 3 levels of transitivity). This exponential growth is caused by our analysis used 
in this case study, which does not distinguish whether a dependent component/project actually makes use of the vulnerable 
code or not.

End-user support during the analysis once again provided by our SE-GPS visualization tool, which includes the option 
to display both direct and transitive dependencies, as well as the severity level of vulnerabilities (color-coded based on 
severity level reported by the NVD database). Fig. 13 shows an example, where the direct and indirect dependencies for the 
Geronimo-jetty6-javaee5 (version 2.1.1) project are visualized. While the project has no direct vulnerability reported in the 
NVD database, it indirectly depends on several components with known security issues.

RQ3: Can a more formal knowledge representation be beneficial in determining transitive dependencies of vulnerable components in 
software ecosystems?

Motivation: In RQ2, we introduce a transitive dependency analysis that identifies all potential transitive dependencies 
between a vulnerable component and other components. A limitation of this dependency analysis is however that it does 
not distinguish if a vulnerable part of a component was actually used by the dependent components. While this conservative 
analysis will result in a high recall, it will also generate many false positives. For example, a component might be dependent 
on a component that contains a vulnerability; however, the actual vulnerable part of that component might never be used. In 
what follows, we refine our original dependency analysis approach to include a static call-dependency graph that considers 
also the actual usage of vulnerable part of a component in its analysis.

Approach: Whenever a vendor confirms the existence of a vulnerability in a product, a patch is released to fix the security 
flaw. The NVD database sometimes contains links to such patches stored in a corresponding versioning repository. Through 
these links, it is now possible to locate the vulnerability in earlier version of that component. Having identified the location 
of vulnerability component part, we can now restrict our transitive dependency result set to include only components that 
actually depend on the vulnerable part of the source code.
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Fig. 13. Transitive vulnerable dependencies for Geronimo-jetty6-javee5 version 2.1.1.

Fig. 14. Transitive dependency vs. actual usage of vulnerable APIs.

Findings: In this case study we compare the results from our initial transitive dependency study, with our refined analysis, 
that considers only the directly or indirectly call dependencies of components that use the vulnerable part(s). As our analysis 
shows (Fig. 14), without considering the actual usage of the vulnerable part of the component, the potential impact set for 
the six selected projects ranged from 151 to 130,612 (median of 22,859) projects. Including the usage of the vulnerable 
parts in the analysis, reduced the number of potentially impacted projects to 9–67 (median of 54), depending on the 
project analyzed.

6. Discussion and threats to validity

6.1. Discussion

As our case studies show, providing a unified and formal representation of original heterogeneous knowledge resources 
can indeed help eliminating existing information silos, by creating information hubs, which can share and integrate knowl-
edge across knowledge boarders. For these information hubs, we take advantage of Semantic Web technologies and use 
ontology-matching methods (terminological and semantic matching methods) to link our ontologies (e.g., SECONT and 
MAVON). This unified schema is now machine-human accessible and can implicitly and explicitly linked through shared 
concepts. Moreover, unlike traditional mining software repositories techniques, our approach allows for analysis results and 
inferred knowledge to become part of the knowledge base and allow for their later consumption (processing) by either 
human or machines.
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Fig. 15. Link quality assessment.

Identifying known security vulnerabilities in software projects has been widely discussed in the literature. However, 
our approach differs from this existing work that it unifies two heterogeneous sources of information (software secu-
rity repositories and build system repositories). Using OWL semantic relationships (e.g., owl:sameAs, owl:equivalentClass and 
owl:equivalentProperty) and RDFS ++ reasoning, we can now infer new knowledge about vulnerable transitive dependencies 
to provide project stakeholders with insights on threats that may harm their projects. In addition, our analysis includes inter 
project and component dependencies, extending traditional vulnerability analysis beyond the individual project scope.

The results from our case studies show that the problem of depending on third party components with known security 
vulnerabilities is widespread in the software development community. These dependencies come with security implications, 
which are often unknown or ignored by developers, due to the lack of traceability links and tool support to identify these 
direct and indirect dependencies caused by the reuse of vulnerable components.

6.2. Threats to validity

6.2.1. Internal validity
Mining Maven and NVD repositories. Our work relies on the ability to mine facts from the Maven and NVD repositories 

to populate our ontologies. A common problem with mining software repository is that repositories often contain noise in 
their data due to ambiguity, inconsistency or incompleteness. This threat can be mitigated in our research context, since 
vulnerabilities published in NVD are manually validated and managed by security experts and therefore making this data 
less prone to noise. Similarly, the Maven repository captures dependencies related to a particular build file, while ensuring 
that the dependencies are fully specified and available, eliminating not only ambiguities and inconsistency at the project 
build but also for the complete dataset.

Other threats to the mining of these repositories are related to the fact that we only extracted vulnerabilities reported 
from 2002 to 2015 from the NVD database. Given the number of vulnerabilities, the broad range of affected projects and 
types of vulnerabilities reported, we consider the dataset as large enough to avoid any bias towards certain vulnerabilities 
or affected libraries.

Mapping accuracy. The ontology matching process used in our approach is based on terminological and semantic similar-
ities. The two repositories, NVD and Maven, use different nomenclatures for identifying projects and vendors. While a human 
can easily recognize the mapping between two different but semantically equal concepts, this is not the case for an auto-
mated solution. Since our results rely on the automatic mapping between the MAVON and SECONT ontology, the accuracy 
of this mapping might not be considered adequate. In order to mitigate this threat, we conducted an evaluation, comparing 
the results obtain from our approach against the OWASP Dependency-Check tool. The OWASP tool, checks for any known, 
publicly disclosed, vulnerabilities on which a project is directly dependent. We randomly selected 87 vulnerable open-source 
Java projects (Table 11) and compared our results with the results obtained from OWASP Dependency-Check tool. For the 
evaluation of the mapping accuracy, we only considered direct dependencies between vulnerabilities and projects, since the 
OWSAP only supports this type of dependency mapping.

For the manual analysis of the mapping results, we used precision, recall and the F1 score (harmonic mean) [44] to 
measure the accuracy for both approaches. Precision is the fraction of projects classified as vulnerable that are actually 
vulnerable, while recall is the fraction of relevant (true positive) vulnerabilities that are retrieved. The F1 score, also called 
the harmonic mean, is a weighted average of the precision and recall to measure the accuracy of the two approaches (see 
Fig. 15).

For our comparison, we calculated precision, recall and F1-score for ten iterations, by incrementally increasing the num-
ber of projects being evaluated in each iteration. This incremental approach allowed us to assess the potential impact of the 
dataset size on the accuracy of our analysis. Table 12 and Fig. 16 show the precision, recall and F1-score which we obtained 
for the different iterations. While the recall of our approach was consistently 100%, recall for the OWASP tool varied be-
tween 62.5% and 91.38%. This fluctuation in OWSAP’s recall was caused by the fact OWASP requires JAR files to be available 
to be able to map the files. However, not all projects hosted in Maven are distributed with their JAR files.
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Table 12
Precision and recall evaluation.

Precision Recall F1-score

OWASP SE-GPS OWASP SE-GPS OWASP SE-GPS

Data points 7 83.33% 80.00% 62.50% 100.00% 71.43% 88.89%
17 93.33% 81.81% 77.78% 100.00% 84.85% 90.00%
27 96.00% 87.50% 85.71% 100.00% 90.57% 93.33%
37 97.06% 90.47% 86.84% 100.00% 91.67% 95.00%
47 97.73% 92.30% 89.58% 100.00% 93.48% 96.00%
57 98.15% 93.54% 91.38% 100.00% 94.64% 96.66%
67 96.72% 94.44% 86.76% 100.00% 91.47% 97.14%
77 97.10% 95.12% 85.90% 100.00% 91.16% 97.50%
87 97.10% 95.60% 76.14% 100.00% 85.35% 97.75%

Avg: 95.17% 90.09% 82.51% 100.00% 88.29% 94.70%

Fig. 16. Precision, Recall and F1 evaluations between SE-GPS and OWASP.

We also observed that OWASP’s precision was on average 5% higher than for our approach, caused by the impreci-
sions in our matching algorithm. Our matching algorithm considers project dependencies with similar name and version 
number (e.g., org.apache.cxf:cxf:3.0.1, org.apache.geronim.configs:cxf:3.0.1 and org.apache.geronimo.plugins:cxf:3.0.1) to be 
incorrectly referring to the same project.

Vulnerability patches and usage. The change-list of programming constructs used to the actual usage of vulnerable code 
fragments in vulnerable components depends on the availability of patch information. In NVD however, not all identified 
vulnerabilities include a complete references to their patches. Furthermore, we also observed cases, where these references 
exist only as a textual description of the patch instead of a URL to the actual source commit, limiting our ability to auto-
matically extract the source code information related to such a particular patch.

6.2.2. External validity
The presented approach for identifying transitive dependencies might not be generalizable for non-MAVEN projects, 

since the presented case studies are based only on the use of the Maven dependency management system. However, given 
the flexibility and openness of our knowledge modeling approach, also dependency information from build repositories 
or resources other than Maven can be integrated in our approach. The quality of our analysis will however depend on 
the ability to extract these dependencies accurately. While the fact extraction process for other build systems (e.g. Ant,22

Gradle23 and MSBuild24) differs from the one we used for Maven, the core domain concepts remain the same for all of 
these repositories.

Another threat to validity for our research is that our evaluation has mainly focused on a quantitative analysis of the 
results from the case studies, limiting our ability to generalize the applicability and validity of the approach. In order to 
mitigate this threat, an additional qualitative analysis has to be performed in the form of user studies, which will allow for 
an evaluation of both, the applicability of the approach (e.g., SE-GPS) and the analysis of the result sets from an expert user 
perspective.

22 http://ant.apache.org/.
23 https://gradle.org/.
24 https://github.com/microsoft/msbuild.

http://ant.apache.org/
https://gradle.org/
https://github.com/microsoft/msbuild
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7. Related work

Analyzing software project artifacts at the security detection level has recently become a very active area of research. 
Such analysis provides valuable insights, when it comes to detect security-related discussions [45], identifying security/non-
security related bug reports [46] or predicting vulnerable software components [47]. However, to the best of our knowledge, 
none of the existing research provides a Semantic Web based infrastructure that supports the semantic linking between 
security vulnerabilities reported in specialized software security repositories and traditional software repositories. Therefore, 
we briefly provide an overview of related work, including research on ontologies in cybersecurity and tracking unknown 
security vulnerabilities in software projects.

Cybersecurity related linked data for software products: Mulwad et al. [48] proposed an approach to detect and extract 
security vulnerabilities from text extracted from Web pages using trained Name Entity Recognition tool25 and classification 
tools [49]. Their prototype uses Wikitology, a general purpose knowledge base derived from Wikipedia26 as well as Yago [50]
and Freebase [51]. The main contribution of their approach is that it extracts related software security concepts from text 
found on the Web and mapping them to related concepts from Wikitology [52]. Additionally, Joshi et al. [36] proposed a 
framework for creating ontologies from NVD entries as part of their approach. They identify software security entities and 
concepts extracted from [53] and link them to their own classifications based on DBpedia Spotlight [54].

Several other frameworks have been introduced in the literature, which take advantage of information available on the 
Internet. In [48], a framework was introduced which also took advantage of Wikitology [52] and in [36] a framework based 
on DBpedia was introduced. Both systems use slightly modified version of the Intrusion Detection System (IDS) ontology 
proposed by More et al. [33] to link cybersecurity entities and concepts with relevant terms extracted from the Internet.

Similar to [37] and [48], our approach also takes advantage of Semantic Web to capture, formalize, and instantiate 
different software vulnerabilities and their associated properties. However, our approach differs from these approaches, by 
unifying heterogeneous datasets (security and non-security related software sources) to explicitly model security concepts 
and link them across repository boundaries. Given our unified representation, we can detect propagations of known security 
vulnerabilities in software products and across large software ecosystems.

Tracking security vulnerabilities: A number of static analysis tools exist (e.g., [55]) that identify vulnerability in the 
source code. However, the objective of these tools differs significantly from our approach, by identifying and tracking se-
curity vulnerabilities only for a given project. This is in contrast to our approach, which focuses on a global dependency 
analysis of vulnerabilities using different sources of information. Mitropoulos et al. [56] and Saini et al. [57] used one of the 
known static analysis tool (e.g., FindBugs [58]), to find major security defects in Java source codes. The collected information 
was further used to study the evolution of security-related bugs in a given project [59]. While their approach detects secu-
rity defects in the source code, our approach focuses on usage of known security vulnerabilities in software components at 
a global scale.

Mircea et al. [60] introduce their Vulnerability Alert Service (VAS) tool to notify users if a vulnerability is reported for 
a software systems. VAS depends on the OWASP Dependency-Check tool, which we compare with our SE-GPS approach 
in Section 6. VAS reports the vulnerable projects identified by the OWASP tool without further investigation; and just like 
OWASP, VAS does not support transitive dependencies analysis of vulnerable components.

8. Conclusions and future directions

In this paper, we introduce a Semantic Web based approach, which uses a unified ontological representation to establish 
bi-directional traceability links between security vulnerabilities databases and traditional software repositories. This model-
ing approach not only eliminates some of the traditional information silos in which these data resources have been resided, 
but also provides the foundation for various types of dependency analysis. More specifically, our approach currently supports 
the linking of vulnerabilities reported by NVD to projects captured by the Maven build repository. Given the expressiveness 
of our ontological knowledge representation, we can now take advantage of semantic inference services to determine both 
direct and transitive dependencies between reported vulnerabilities and potentially affected Maven projects. We also in-
troduce a tool prototype to illustrate how our analysis results can be made accessible to developers. Through several case 
studies, we showed the applicability of our approach, highlighting the potential impact of reusing vulnerable components 
in a global software ecosystem context.

As part of our future work, we will focus on investigating potential vulnerability patterns based on the usage of com-
ponents to provide additional insights in assessing and predicting the quality of software systems. We also plan to extend 
our SE-GPS tool, to include a software developer’s context in the dependency analysis to further improve the relevance 
of analysis results. While our current version of SE-GPS does not support automatic vulnerability notifications, we plan to 
include such notifications in our next release of SE-GPS, by taking advantage of a developer’s work and task context to 
provide situation aware analysis results.

25 http://nlp.stanford.edu/ner/.
26 http://www.wikipedia.org/.

http://nlp.stanford.edu/ner/
http://www.wikipedia.org/
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